Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 13(1): 3887, 2023 03 08.
Article in English | MEDLINE | ID: covidwho-2259559

ABSTRACT

The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) variants of concern (VOCs), with mutations linked to increased transmissibility, vaccine escape and virulence, has necessitated the widespread genomic surveillance of SARS-CoV-2. This has placed a strain on global sequencing capacity, especially in areas lacking the resources for large scale sequencing activities. Here we have developed three separate multiplex high-resolution melting assays to enable the identification of Alpha, Beta, Delta and Omicron VOCs. The assays were evaluated against whole genome sequencing on upper-respiratory swab samples collected during the Alpha, Delta and Omicron [BA.1] waves of the UK pandemic. The sensitivities of the eight individual primer sets were all 100%, and specificity ranged from 94.6 to 100%. The multiplex HRM assays have potential as a tool for high throughput surveillance of SARS-CoV-2 VOCs, particularly in areas with limited genomics facilities.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Mutation , Biological Assay , Genomics
2.
Cell Rep Med ; 4(3): 100954, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2269176

ABSTRACT

Human norovirus is the leading cause of acute gastroenteritis. Young children and the elderly bear the greatest burden of disease, representing more than 200,000 deaths annually. Infection prevalence peaks at younger than 2 years and is driven by novel GII.4 variants that emerge and spread globally. Using a surrogate neutralization assay, we characterize the evolution of the serological neutralizing antibody (nAb) landscape in young children as they transition between sequential GII.4 pandemic variants. Following upsurge of the replacement variant, antigenic cartography illustrates remodeling of the nAb landscape to the new variant accompanied by improved nAb titer. However, nAb relative avidity remains focused on the preceding variant. These data support immune imprinting as a mechanism of immune evasion and GII.4 virus persistence across a population. Understanding the complexities of immunity to rapidly evolving and co-circulating viral variants, like those of norovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), and dengue viruses, will fundamentally inform vaccine design for emerging pathogens.


Subject(s)
COVID-19 , Norovirus , Humans , Child , Child, Preschool , Aged , Antibodies, Viral , Norovirus/genetics , RNA, Viral , Epitopes , SARS-CoV-2 , Antibodies, Neutralizing
3.
J Travel Med ; 29(3)2022 05 31.
Article in English | MEDLINE | ID: covidwho-1758787

ABSTRACT

BACKGROUND: A rapid, accurate, non-invasive diagnostic screen is needed to identify people with SARS-CoV-2 infection. We investigated whether organic semi-conducting (OSC) sensors and trained dogs could distinguish between people infected with asymptomatic or mild symptoms, and uninfected individuals, and the impact of screening at ports-of-entry. METHODS: Odour samples were collected from adults, and SARS-CoV-2 infection status confirmed using RT-PCR. OSC sensors captured the volatile organic compound (VOC) profile of odour samples. Trained dogs were tested in a double-blind trial to determine their ability to detect differences in VOCs between infected and uninfected individuals, with sensitivity and specificity as the primary outcome. Mathematical modelling was used to investigate the impact of bio-detection dogs for screening. RESULTS: About, 3921 adults were enrolled in the study and odour samples collected from 1097 SARS-CoV-2 infected and 2031 uninfected individuals. OSC sensors were able to distinguish between SARS-CoV-2 infected individuals and uninfected, with sensitivity from 98% (95% CI 95-100) to 100% and specificity from 99% (95% CI 97-100) to 100%. Six dogs were able to distinguish between samples with sensitivity ranging from 82% (95% CI 76-87) to 94% (95% CI 89-98) and specificity ranging from 76% (95% CI 70-82) to 92% (95% CI 88-96). Mathematical modelling suggests that dog screening plus a confirmatory PCR test could detect up to 89% of SARS-CoV-2 infections, averting up to 2.2 times as much transmission compared to isolation of symptomatic individuals only. CONCLUSIONS: People infected with SARS-CoV-2, with asymptomatic or mild symptoms, have a distinct odour that can be identified by sensors and trained dogs with a high degree of accuracy. Odour-based diagnostics using sensors and/or dogs may prove a rapid and effective tool for screening large numbers of people.Trial Registration NCT04509713 (clinicaltrials.gov).


Subject(s)
COVID-19 , Dogs , Animals , Asymptomatic Infections , COVID-19/diagnosis , Humans , Mass Screening , SARS-CoV-2 , Sensitivity and Specificity , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL